Nikhil Chinnalapatti Gopinath

Mobile: +1 (412) 708 7954 Email: nchinnal@andrew.cmu.edu Address: 5562 Hobart Street, Pittsburgh, PA, 15217 Website: nikhilcg26.github.io Linkedin: www.linkedin.com/in/nikhilcg/ GitHub: www.github.com/NikhilCG26

EDUCATION

Carnegie Mellon University	Pittsburgh, PA
Master's in Mechanical Engineering - Robotics and Control Systems; GPA: 4.00/4.00	Aug 2022 - Dec 2023
Relevant Coursework: Intro to Deep Learning, Advanced Natural Language Processing, Machine Learning and	
Artificial Intelligence, Trustworthy AI Autonomy, Computer Vision for Engineers, and Modern Control Theory	
RV College of Engineering	Bangalore, India

RV College of Engineering Bachelor in Mechanical Engineering (Honors); GPA: 9.00/10.00 Skills

Programming Languages: C, C++, Python, Matlab, Julia, SQL, HTML, C#, CSS Tools: Pytorch, OpenCV, GCP, AWS, Solidworks, Ansys, AutoCAD, Arduino, Unity3D, Git, LaTeX Simulation: ROS, Gazebo, Pybullet, RViz, Simulink, Webots, Carla, Anylogic, Flexsim

EXPERIENCE

Robomechanics Lab, Carnegie Mellon University

Pittsburgh, PA

Bangalore, India

Research Assistant • Developed computational design optimization of a Quadruped Robot with a Spine using Pybullet simulation on ROS • Devised an end-to-end hierarchical Model Predictive controller for generating joint commands of the quadruped;

Worked on grant with Google DeepMind

Airbus India

- Intern Industrial System
 Built a Digital Twin of the FAL using Unity3D; Simulated the motion of a user-controllable avatar, created custom animations and process flow of the FAL of A320, increasing productivity by 20%.
 - Developed the UI/UX for the Digital Twin to be used on a Computer, and Mobile Device, as a visual interface for Discrete Event Simulation and training tool for engineers.

ACADEMIC PROJECTS

Automatic Speech Recognition using Synthetic Speech - CMU [Github]
 Jan 2023 - May 2023
 Generated 300 hours of Synthetic data using Variational Inference with adversarial learning Text-to-Speech models

• Created a state-of-the-art speech recognition system using Attention-based Deep Neural Network models trained only on synthetic audio data; Achieved a Levenshtein Distance of 23.38 and Loss of 0.14

- Deep Learning CMU [Github]
 Jan 2023 May 2023

 Implemented phoneme recognition model with 89.2% on Librispeech; Trained CNN models for Face Classification

 (position-invariant pattern)-89.9% and Verification (detectors for novel classes)-64.3%; Created an automatic speech recognition model using LSTMs, RNNs and CTCs, with a Levenshtein Distance of 3.98; Implemented Bidirectional pBLSTMs for End-to-end Attention based Text-to-Speech DNNs with Levenshtein Distance of 9.99
- Multi-Vehicle Racing Line Optimization CMU [Github]
 Greated a DIRCOL trajectory optimization-based controller for two autonomous race cars using an IPOPT solver;
- Visualization using Julia Plot and Meshcat Libraries
 - Simulated using Integrated combined dynamics models Kinematics & Dynamics and double integrator with repulsion solver.
- **Construction Site Hazard Detection using Computer Vision CMU [Github]** Oct 2022 Dec 2022 Programmed a worker detection model using YoloV7 and Transfer Learning, and computation of 3D global
- coordinates using transformation matrices; Achieved a mAP0.5 of 92% with a 90% precision and 93% recall. Path planning and control strategies for an autonomous buggy - CMU [Github]Oct 2022 - Dec 2022• Fine-tuned LQR and MPC controllers for lateral and longitudinal control of a buggy; using a bicycle dynamics model.
 - Deployed EKF-SLAM and MPC to navigate a GPS-based trajectory within 120s and 3m deviation in Webots.
- Mars Rover Astra Robotics (RVCE) [Github] Jul 2018 Lead a team of 30 as the Mechanical subsystem head in the design and fabrication of two Mars Rover Jul 2018 - Aug 2022
 - Implemented a bar differential with a rocker boogie mechanism to traverse rugged Martian terrain, validated using Matlab simulation; developed a 6 DOF robotic arm to lift objects up to 5 Kgs and operate the control panel; redesigned the wheels into honeycomb structures to help stress distribution and increased durability.

Face Mask Recognition System using Computer Vision - RVCE [Github] Aug 2020 - Sept 2020 • Created a Face Mask Recognition System using TensorFlow, MobileNetV2, and OpenCV for classification; Achieved

- an accuracy of 92% when deployed on low computational consumption devices.
- Implemented concepts of Image Processing and Deep Learning Models using OpenCV Viola Jones and LabelImg

Achievements

Leadership: CMU Mechanical Graduate Student Ambassador; Mechanical Subsystem Head of Astra Robotics Rover Challenge: Indian Rover Challenge: Rank 7 - Jan 2020; Indian Rover Design Challenge: Rank 12 - Aug 2020 Debate: National Tournaments: IIT Bombay, NLSIU Bangalore, ILS Pune, PES University, Christ University Bangalore

Aug 2018 - Jul 2022